Faculty Directory

Wang, Chunsheng

Wang, Chunsheng

Professor
R.F. and F.R. Wright Distinguished Chair
UMD Director of Center for Research in Extreme Batteries (CREB)
Affiliate Fellow (REFI)
Fellow, Electrochemical Society
Chemical and Biomolecular Engineering
Materials Science and Engineering
Maryland Energy Innovation Institute
Robert E. Fischell Institute for Biomedical Devices
3236 Kim Engineering Building (KEB)
Website(s):

EDUCATION

Ph.D., Zhejiang University, China, 1995

 

HONORS AND AWARDS

  • Fellow, The Electrochemical Society
  • Battery Division Research Award, 2021, The Electrochemical Society
  • UMD’s Invention of the Year, 2015, 2021
  • 2020: Top 10 Battery Researchers to Watch, The Electrochemical Society
  • Robert Franklin and Frances Riggs Wright Distinguished Chair, 2018
  • Junior Faculty Outstanding Research Award, 2013 
  • Sigma Xi (Tennessee Technological University Chapter) Research Award, 2006
  • NASA Technology Brief Patent Application and Software Release Award, 2004

 

 

Rechargeable batteries, Applied electrochemistry, Fuel cells, electroanalytical technologies, Nanostructured materials, Electrochemical gas separation and compression


Professor Wang's research interests are electroanalytical technologies, advanced materials for rechargeable batteries, fuel cells and supercapacitors. He has published over 340 papers in peer-reviewed journals including Science, Nature, Nature Energy, Nature Materials, Nature Nanotechnology, Nature Chemistry, Nature Communications, Science Advance, Joule, Proceedings of the National Academy of Sciences, Journal of the American Chemical Society, Advanced Materials. His research has been cited more than 56000 times and has an H-index of 123.
In collaboration with ARL scientists, he achieved the scientific breakthrough in electrolyte materials with the invention of water-in-salt electrolytes for Li-ion batteries (Science 2015) and transition metal-free cathode chemistry based on halide-graphite conversion-intercalation (Nature 2019), and Zn-air batteries (Nature Materials, 2018), which opened an entirely new area of high voltage aqueous electrochemistry and batteries that never existed before, and has inspired many researchers to follow.  He also developed a fluorinated electrolyte to form LiF-rich solid-electrolyte-interphase (SEI) on anode and Cathode-electrolyte-interphase (CEI) on the high-voltage cathode to stabilize electrodes (Nature Nanotechnology, 2018). This new design philosophy of SEI sets the foundation for new battery chemistries for years to come.
 

For more information about current research projects, please visit Professor Wang's web site.

Professor Wang currently teaches or has taught the following courses:

  • CHBE 301Chemical Engineering Thermodynamics I
  • ENCH 473: Electrochemical Energy Engineering
  • ENCH 437: Chemical Engineering Laboratory
  • ENCH 808/ENPM 808/ENCH648k: Advanced Fuel Cells and Batteries

Professor Wang also advises the department's  undergraduate Chem-E Car team, which took first place at the American Institute of Chemical Engineers’ (AIChE) mid-Atlantic Regional Conference's Chem-E Car Competition in 2011, and second place at the regional competition in 2012.

Selected Publications as a corresponding author

Click on the Researcher ID or Google Scholar to view all publications, citations, and H-index

  1. D. Lu, R. Li, M. M. Rahman, P. Yu, L. Lv, S. Yang, Y. Huang, C. Sun, S. Zhang, H. Zhang, J. Zhang, X. Xiao, T. Deng, L. Fan, L. Chen, J. Wang, E. Hu, C. Wang, X. Fan, Ligand-channel-enabled ultrafast Li-ion conduction, Nature2024, https://doi.org/10.1038/s41586-024-07045-4
  2. W. Zhang, V. koverga, S. Liu, J. Zhou, J. Wang, P. Bai, S. Tan, N. K. Dandu, Z. Wang, F. Chen, J. Xia, H. Wan, X. Zhang, H. Yang, B. L. Lucht, A.-M. Li, X.-Q. Yang, E. Hu, S. R. Raghavan, A. T. Ngo, C. Wang, Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries, Nature Energy2024, https://doi.org/10.1038/s41560-023-01443-0
  3. Z. Wang, J. Xia, X. Ji, Y. Liu, J. Zhang, X. He, W. Zhang, H. Wan, C. Wang, Lithium anode interlayer design for all-solid-sate lithium-metal batteries, Nature Energy2024, https://doi.org/10.1038/s41560-023-01426-1
  4. H. Wan, J. Xu, C. Wang, Designing electrolytes and interphases for high-energy lithium batteries, Nature reviews chemistry2023, https://doi.org/10.1038/s41570-023-00557-z
  5. H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Interface design for all-solid-state lithium batteries, Nature2023, https://doi.org/10.1038/s41586-023-06653-w
  6. J. Xu, J. Zhang, T. P. Pollard, Q. Li, S. Tan, S. Hou, H. Wan, F. Chen, H. He, E. Hu, K. Xu, X.-Q. Yang, O. Borodin, C. Wang, Electrolyte design for Li-ion batteries under extreme operating conditions, Nature2023, https://doi.org/10.1038/s41586-022-05627-8

  7. H. Wan, Z. Wang, S. Liu, B. Zhang, X. He, W. Zhang, C. Wang, Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design, Nature Energy, 2023, https://doi.org/10.1038/s41560-023-01231-w. Research Briefing.
  8. C. Yang, J. Xia, C. Cui, T. P. Pollard, J. Vatamanu, A. Faraone, J. A. Dura, M. Tyagi, A. Kattan, E. Thimsen, J. Xu, W. Song, E. Hu, X. Ji, S. Hou, X. Zhang, M. S. Ding, S. Hwang, D. Su, Y. Ren, X.-Q. Yang, H. Wang, O. Borodin, C. Wang, All-temperature zinc batteries with high-entropy aqueous electrolyte, Nature Sustainability2023. https://doi.org/10.1038/s41893-022-01028-x

  9. X. Yang, B. Zhang, Y. Tian, Y. Wang, Z. Fu, D. Zhou, H. Liu, F. Kang, B. Li, C. Wang, G. Wang, Electrolyte design principles for developing quasi-solid-state rechargeable halide-ion batteries, Nature Communications2023, 14:925

  10. J. Xu, T. P. Pollard, C. Yang, N. K. Dandu, S. Tan, J. Zhou, J. Wang, X. He, X. Zhang, A.-M. Li, E. Hu, X.-Q. Yang, A. Ngo, O. Borodin, C. Wang, Lithium halide cathodes for Li metal batteries, Joule, 2022, https://doi.org/10.1016/j.joule.2022.11.002

  11. R. Jain, A. S. Lakhnot, K. Bhimani, S. Sharma, V. Mahajani, R. A. Panchal, M. Kamble, F. Han, C. Wang, N. Koratkar, Nanostructuring versus microstructuring in battery electrodes, Nature Reviews Materials2022. https://doi.org/10.1038/s41578-022-00454-9.

  12. W. Feng, J. Hu, G. Qian, Z. Xu., G. Zan, Y. Liu, F. Wang, C. Wang, Y. Xia, Stabilization of garnet/Li interphase by diluting the electronic conductor, Science Advances, 2022, 8, eadd8972

  13. M. Liao, X. Ji, Y. Cao, J. Xu, X. Qiu, Y. Xie, F. Wang, C. Wang, Y. Xia, Solvent-free protic liquid enabling batteries operation at an ultra-wide temperature range, Nature Communications, 2022. 13:6064

  14. C. Wang, T. Deng, X. Fan, M. Zheng, R. Yu, Q. Lu, H. Duan, H. Huang, C. Wang, X. Sun, Identifying soft breakdown in all-solid-state lithium battery, Joule2022. https://doi.org/10.1016/j.joule.2022.05.020.

  15. S. Hou, L. Chen, X. Fan, X. Fan, X. Ji, B. Wang, C. Cui, J. Chen, C. Yang, W. Wang, C. Li, C. Wang, High-energy and low-cost membrane-free chlorine flow battery, Nature Communications, 2022. 13:1281.

  16. J. Xu, X. Ji, J. Zhang, C. Yang, P. Wang, S. Liu, K. Ludwig, F. Chen, P. Kofinas, C. Wang, Aqueous electrolyte design for super-stable 2.5V LiMn2O4||Li4Ti5O12 pouch cells, Nature Energy, 2022. https://doi.org/10.1038/s41560-021-00977-5

  17. T. Deng, X. Ji, L. Zou, O. Chiekezi, L. Cao, X. Fan, T. R. Adebisi, H-J. Chang, H. Wang, B. Li, X. Li, C. Wang, D. Reed, J-G. Zhang, V. L. Sprenkle, C. Wang, X. Lu Interfacial-engineering-enabled practical low-temperature sodium metal battery, Nature Nanotechnology2021, https://doi.org/10.1038/s41565-021-01036-6

  18. S. Hou, X. Ji, K. Gaskell, P. Wang, L. Wang, J. Xu, R. Sun, O. Borodin, C. Wang, Solvation Sheath Reorganization Enabled Divalent Metal Batteries with Fast Interfacial Charge Transfer Kinetics, Science2021, 374, 172-178.

  19. W. Sun, F. Wang, B. Zhang, M. Zhang, V. Kupers, X. Ji, C. Theile, P. Bieker, K. Xu, C. Wang, M. Winter, A rechargeable zinc-air battery based on zinc peroxide chemistry. Science, 2021, 371, 46-51.

  20. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu. Water-in-Salt Electrolyte Enables High Voltage Aqueous Li-ion Chemistries. Science, 2015, 350, 938.

  21. C. Yang, J. Chen, X. Ji, T. P. Pollard, X. Lü, C. Sun, S. Hou, Q. Liu, C. Liu, T. Qing, Y. Wang, O. Borodin, Y. Ren, K. Xu, C. Wang, Aqueous Li-ion Battery Enabled by Halogen Conversion-Intercalation Chemistry in Graphite, Nature, 2019, 569, 245.

  22. J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi, Y. Xu, S. Hwang, L. Chen, X. Ji, C. Yang, H. He, C. Wang, E. Garfunkel, D. Su, O. Borodin, C. Wang, Electrolyte Design for LiF-rich Solid-Electrolyte Interfaces to Enable High-performance Microsized Alloy Anodes for Batteries. Nature Energy, 2020, 5, 386–397.

  23. X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. Wang, All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents, Nature Energy, 2019, 4, 882.

  24. F. Han, A. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. Leonard, N. Dudney, H. Wang, C. Wang, High Electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nature Energy, 2019, 4, 187-196.

  25. L. Wang, A. Menakath, F. Han, Y. Wang, P. Zavalij, K. Gaskell, O. Borodin, D. Luga, S. Brown, C. Wang, K. Xu, B. Eichhorn, Identifying the components of the solid–electrolyte interphase in Li-ion Batteries, Nature Chemistry, 2019, 11, 789.

  26. L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X-Q. Yang, K. Xu, O. Borodin, C. Wang, Fluorinated interphase enables reversible aqueous zinc battery chemistries, Nature Nanotechnology, 2021,1730

  27. X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S. Liou, K. Amine, K. Xu, C. Wang, Non-flammable Electrolyte Enables Li-Metal Batteries with Aggressive Cathode Chemistries, Nature Nanotechnology, 2018, 13, 715-722

  28. F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. Dura, K. Xu and C. Wang, Highly Reversible Zinc-Metal Anode for Aqueous Batteries, Nature Materials, 2018, 17, 543-549.

  29. L. Chen, L. Cao, X. Ji, S. Hou, Q. Li, J. Chen, C. Yang, N. Edison, C. Wang, Enabling Safe Aqueous Lithium-ion Open Batteries by Suppressing the Oxygen Reduction Reaction. Nature Communications, 2020, 11, 1-8.

  30. X. Fan, E. Hu, X. Ji, Y. Zhu, F. Han, S. Hwang, J. Liu, S. Bak, Z. Ma, T. Gao, S.-C. Liou, J. Bai, X.-Q. Yang, Y. Mo, K. Xu, D. Su, C Wang, High Energy-Density and Reversibility of Iron Fluoride Cathode Enabled Via an Intercalation-Extrusion Reaction, Nature Communications, 2018, 9, 1-12.

  31. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J Cumings, and C. Wang. Expanded Graphite as Superior Anode for Sodium-Ion Batteries. Nature Communications, 2014, 5, 4033.

  32. X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Science Advances, 2018, 4, eaau9245.

  33. C. Luo, E. Hu, K. J. Gaskell, X. Fan, T. Gao, C. Cui, S. Ghose, X-Q. Yang, C. Wang, A Chemically Stabilized Sulfur Cathode for Lean Electrolyte Lithium Sulfur Batteries. Proceedings of the National Academy of Sciences, 2020, 117, 14712- 14720.

  34. C. Luo, O. Borodin X. Ji, S. Hou, K.J. Gaskell, X. Fan, J. Chen, T. Deng, R. Wang, J. Jiang, C. Wang, Azo compounds as a family of organic electrode materials for alkali-ion batteries, Proceedings of the National Academy of Sciences, 2018, 115, 2004-2009.

  35. C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun, T. Gao, X. Fan, S. Hou, Z. Ma, K.l Amine, K. Xu, and C. Wang, Unique Aqueous Li-ion/Sulfur Chemistry with High Energy Density, Proceedings of the National Academy of Sciences, 2017,114, 6197–6202.

To view a complete list of Professor Wang's publications, citation metrics, and H-Index, please consult his entry on ResearcherID.

Lighter, Safer and Stronger Batteries Could Power the Smart Devices of Tomorrow

Chemical engineers develop a new technology that could increase energy density and safety of consumer electronics.

Safer Electric Vehicles Could Come Soon After this Recent Breakthrough in Battery Research

Study shows how lithium dendrites forms in solid-state batteries to unveil new design solution. 

Wang Develops New Battery Technology That Could Lead to Safer, High-Energy Electric Vehicles

Researchers Develop Way to Prevent Damage That Plagues Next-Generation Lithium Batteries

Maryland’s Chemical and Biomolecular Engineering Ranks 27th Among Nation’s Undergraduate Programs

Chemical and Biomolecular Engineering rose to 17th among public universities. 

Chunsheng Wang Named Electrochemical Society Fellow

Chunsheng Wang Named Electrochemical Society Fellow

Safe Lithium Batteries Get a Boost

UMD researchers have developed lithium dendrite suppression parameters and electrolytes for longer-lasting batteries that can operate under extreme conditions.

New Electrolyte Design Could be the Answer for Safer Rechargeable Batteries even in Extreme Cold

UMD published in Nature paper on electrolyte design for high energy batteries capable of operating under extreme temperature conditions.

New Sustainable Zinc Battery Design Could Address Future Energy Needs

New UMD-led research published in Nature Sustainability explores a new approach for aqueous zinc battery design.

Chunsheng Wang Presents to U.S. Government Panel on Advances in Li-Ion Battery Technology

Researchers lend expertise and perspective to the future of Lithium-Ion technology and security in the U.S.

CREB Receives $9M Cooperative Agreement

DOD funding will advance transformational U.S. Army battery technology

Maryland Engineering Graduate Programs: Top 10 Public, Four Years in a Row

Maryland Engineering earns a top spot in the 2023 U.S. News & World Report Best Graduate Schools rankings among over 200 colleges.

UMD Research Group Creates Cheap, Membrane-Free Chlorine Battery

Wang group published in Nature Communications.

Novel engineering method enables low-temp sodium metal battery

Study, led by University of Maryland research team, published in Nature Nanotechnology.

Batteries that function in the iciest conditions

CREB held its 2021 fall meeting to discuss battery chemistry designed for super-cold environments.

Nine Maryland Engineers Recognized as Being "One in 1,000"

Clark School researchers among the "who's who" of influential researchers, according to Clarivate.

New electrolyte bolsters rechargeable battery design

UMD/ARL research team overcomes challenges in magnesium, calcium battery development with new design principle.

UMD receives 2 IARPA RESILIENCE awards

New program launched from Office of National Intelligence

Next-Gen Lithium-Metal Batteries

UMD's Wang Research Group develops polymer-inorganic solid-electrolyte interphase for use in polymeric solid-state lithium batteries.

Chunsheng Wang Wins 2021 ECS Battery Division Research Award 

Wang will be recognized at a ceremony during the fall meeting.

Student Researchers Recognized with Wylie Dissertation Fellowships

Fourteen Clark School students pursuing their Ph.D.s in engineering have been awarded Ann G. Wylie Dissertation Fellowships by the University of Maryland Graduate School.

'Fluorinated interphase' bolsters water-based zinc battery chemistry

Wang Research Group collaborating with ARL publishes study in Nature Nanotechnology.

AquaLith Advanced Materials Licenses Lithium-Ion Battery Technology Developed at University of Maryland

Technology is based on the work of Prof. Chunsheng Wang in the A. James Clark School of Engineering

From Innovation to Inauguration

Pines Announces New Quantum Business Incubator, Presents Invention and Entrepreneurship Awards

Clark School Innovators Honored with Invention of the Year Award Nominations

Among the nine 2021 Invention of the Year nominees, four are led by or include Clark School researchers.

Chemical Engineering at Maryland On the Rise

2022 USNWR Graduate Rankings put ChemE at Maryland at #19.

Maryland Graduate Engineering Ranked #10 Public in the Nation

From extreme batteries to windows made from wood, Clark School’s trendsetting work ranks it among the country’s Top 10 public engineering schools for the 3rd consecutive year.

M. Stanley Whittingham Joins CREB Steering Committee

Whittingham won the 2019 Nobel Prize in Chemistry for his work with Li-ion batteries.

CREB Kicks Off 2021 with Meeting to Discuss Future of Battery Research

The virtual meeting aimed to bolster battery technology under extreme conditions.

Innovative Chemistry Revolutionizes the Zinc-Air Battery

International research group publishes study for next-gen sustainable batteries in Science.

New government partner joins UMD’s Center for Research in Extreme Batteries

National Institute of Standards and Technology to collaborate

UMD Researcher Receives New $1M Vehicle Technology Award

Micro-sized silicon anode expands energy capacity.

2020 Dean's Doctoral Student Research Awards

The competition recognizes distinguished graduate student researchers in order to help propel their careers and demonstrate the value of high-quality engineering research.

ChBE Alumni Spotlight: Chao Luo Receives NSF Grant

Luo (Ph.D. ’15) will use the funding to exploit new materials and chemistries for Na-ion and multivalent metal batteries. 

Sulfur Provides Promising 'Next-Gen' Battery Alternative

Multi-institutional research team led by Chunsheng Wang published in PNAS.

UMD Researchers Design ‘Open’ Lithium-ion Battery

The design bolsters both battery safety and performance.

Chunsheng Wang Named 1 of 10 Li-ion Battery Researchers to Watch

Wang, known for his versatile battery research, cited by Research Interfaces.

High-performance electrolyte solves battery puzzle

UMD poses answer to making a nanostructured battery: a better electrolyte

Potassium Metal Battery Emerges as a Rival to Lithium-Ion Technology

UMD collaborates on battery-healing development

MEI² Scientists Named Highly Cited Researchers in 2019

Hu and Wang identified by Web of Science

What’s Next for Next-Gen Batteries?

High-energy-density polymeric cathode for fast-charge sodium and multivalent batteries.

ChBE Ph.D. Student Wins Battery500 Young Investigators Award

Tao Deng, advised by Prof Chunsheng Wang, will receive $40K in funding to develop his “salt-in –polymer” electrolyte for Li-metal batteries.

ChBE Research Groups Receive DOE Vehicle Technology Awards

Professors Wachsman and Wang received $1 million each for battery research.

UMD/MEI2 Energy Innovation Featured at ARPA-E 2019

ARPA-E Marks 10 Years of Technology Innovation

Reversible Chemistry Clears Path for Safer Batteries

UMD and ARL scientists create water-based battery with outstanding performance

Wang Group Develops Highly Reversible 5.3 V Battery

Research paper published in Chem.

Nanostructure of carbon and metal could solve potassium-battery puzzle

Rational design produces a missing piece of battery chemistry for cheaper, capacious batteries

3 UMD Projects Receive DOE Funding

Building Energy Efficient Frontiers & Innovation Technologies (BENEFIT) awards announced

Fluorine "Crust" Makes Safe, Powerful Battery

UMD Engineers create safer, longer-lasting, high-capacity solid-state battery.

Clark School Faculty Members Named Highly Cited Researchers

Hu, Wang demonstrated significant influence through publication of multiple highly cited papers during the last decade.

Advance could yield safer, longer-range electric car batteries

Chemical engineers pack more energy in same space for reliable battery.

UMD engineers, colleagues work to triple the energy storage of lithium-ion batteries

Researchers have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries.

ChBE PhD Candidate Fudong Han Wins 2018 Dean's Doctoral Research Award

Han took third place in the annual Clark School competition.

A higher-energy, safer and longer-lasting zinc battery

Researchers revive an old chemistry with a new electrolyte.

Chungsheng Wang Receives UMD's 17th ARPA-E Award

Grant will fund research of carbon-neutral fuel with high energy density.

Hybrid Electrolyte Bridges Gap Between Aqueous and Non-aqueous Battery Technology

Study conducted by University of Maryland Prof Chunsheng Wang and U.S. Army Research Lab Scientist Kang Xu's research groups, published in Joule. 

Sandwich Battery with ‘Melty’ Layer is Safe, Robust

UMD engineers create all-ceramic battery with long cycle life

Strength in Numbers, Especially Family Groups

UMD ChBE researchers develop a cluster of azo materials for use in alkali-ion batteries.

UMD ChBE Researchers Continue Search for Li-Battery Stabilization

Corresponding research paper published in CHEM magazine. 

Organic Processes Inspire Technological Innovation

ChBE researchers develop self-healing battery chemistry.

UMD Researchers Develop Stable, Robust Li-ion Battery Chemistry

New battery created by Chunsheng Wang's group offers safety, durability and flexibility. 

UMD Researchers Offer Solution to Volatile Battery Chemistry in Electronics

4.0V Water-Based Li-ion Batteries Achieved by ChBE Professor Chunsheng Wang's Research Group

ChBE Reasearchers Offer New Salt-Water-Based Battery Chemistry

Chunsheng Wang and team offer highest energy density ever achieved in an aqueous battery.

ChBE PhD Candidate Wins MRS Gold Award

Fudong Han focuses his research on improving the all-solid-state-battery.

Chem-E Car Set to Compete in National Competition

The UMD team placed 5th at the Mid-Atlantic Regional Competition, securing their spot for Nationals in October.

Cheaper, Faster and Longer Lasting: What Magnesium Iodine Chemistry Can Offer

Chunsheng Wang's research group is developing a rechargeable magnesium/iodine battery for daily consumer use.

Ye Tao Wins Best Student Presentation Award for Fall CEEE Consortium Meeting

His paper, Electrochemical Compression, won amoungst strong competition.

UMD Leads Development of Safer Water-in-Salt Electrolyte Lithium Battery

University of Maryland and US Army Research Lab researchers are spearheading a collaboration to develop a safer and less-costly lithium battery.

UMD Ph.D candidates win awards for next generation batteries and electrochemical compressor

Research on advanced batteries and a next generation electrochemical compressor recently garnered a set of awards for three University of Maryland graduate students in the Department of Chemical and Biomolecular Engineering.

UMD has Largest University Showing at 2016 ARPA-E Summit

UMD researchers showcase transformative energy research at ARPA-E Energy Innovation Summit

UMD & Army Researchers Discover Salty Solution to Better, Safer Batteries

Greatest potential uses seen in safety-critical, automotive and grid-storage applications

ChemE Jeopardy Team Wins National Competition

UMD's ChemE team topped eight competitor teams in the AIChE national Jeopardy competition.

University of Maryland Researchers Accept NASA Mission: Build a Better Battery for Space Exploration

UMD researchers awarded NASA funding for advanced energy storage technology

High Energy at Extreme Battery Center’s First Meeting

New research center expands scope and draws regional experts.

For Batteries, One Material Does It All

Revolutionary material could create safer, simpler and more efficient all-in-one batteries

2014-2015 ChBE Undergraduate Awards

Exceptional students recognized at annual ceremony.

UMD Partners with Army to Launch Extreme Battery Research Center

New center cofounded by ChBE professor Chunsheng Wang.

UMERC Researchers Came Out in Force at the ARPA-E Summit

UMERC Faculty promoted their transformative energy research last week at the ARPA-E Energy Innovation Summit

You Can Help Our Chem-E Car, Testudo Mobile, Get Competition-Ready!

Launch UMD helps team raise funds for upgrades, travel to national competition.

UMERC's Advanced Energy Storage Technology Selected by NASA

Energy storage research at UMERC has been selected by NASA to potentially power future space missions.

Department of Energy renews NEES EFRC for four years

The center develops highly ordered nanostructures that offer a unique way of looking at the science of energy storage.

Wells Fellowships Support New Battery and Catalyst Technologies

Chemical and Biomolecular Engineering graduate students receive inaugural awards.

Room To Move: Spacing Graphite Layers Makes a Better Battery Anode

New process designed to make Na-ion batteries an effective alternative to Li-ion.

Chem-E Car Team Heads to Finals!

New vehicle debuted at regional competition.

C. Wang Enters R&D Partnership with Huizhou Eve Energy

Professor will develop battery components for China’s top manufacturer.

Wang Wins 2013 Junior Faculty Research Award

Research in energy conversion and storage systems serves as model for field.

UMD Researchers Awarded Two ARPA-E Grants for Electric Vehicle Energy Storage Systems

Eric Wachsman and Chunsheng Wang receive funding to create innovative batteries for electric vehicle energy storage systems.

Chem-E Car Team Heads to National Competition Once Again!

Team Thirsty Turtles will take "Pride of Maryland" to San Francisco in November.

New Nanocomposite Anodes Speed Battery Charging

Recent results from Wang, Zachariah featured in Nano Letters, C&EN.

Chem-E Car at AIChE

Fierce, close competition sees team in 11th place despite being close to the line; team scores 2nd in poster competition.

All-In-One: $300K for Development of Interface-Free Battery

National Science Foundation supports C. Wang's efforts to create a single material for anode, electrolyte, and cathode.

Karlsson Joins ChBE Faculty

Professor seeks to improve diagnosis and treatment of fungal diseases in immunocompromised patients.

Chunsheng Wang Promoted

Faculty member becomes Associate Professor, receives tenure, effective July 1.

ChBE Graduate Research Awards Announced

Winners will represent department in college-level competition.

"Team Thirsty Turtles" Wins Spot in National Chem-E-Car Competition

Clark School chemical and biomolecular engineering students take second in mid-Atlantic region.

ChBE Undergrads Win 5 of 29 Prestigious Industrial Internships

"Exceptional sophomores and juniors" chosen from nationwide field of applicants for $6K-$10K internships.

Tuned Synthesis of Novel Polymer Gives Alkaline Fuel Cells New Potential

Work by grad student Yanting Luo, colleagues featured on cover of Macromolecular Chemistry and Physics.

Chem-E Car Sponsor Hosts Team Visit

W.R. Grace Foundation invites Team Thirsty Turtles to Columbia campus.

Team Thirsty Turtles Wins Chem-E Car Regional Championship

Group will compete in AIChE national competition this fall.

Conway, Ehrman, Guo and Wachsman Present at Sustainability Workshop

Presentations covered solar and fuel cell solutions, advanced batteries.

2010-2011 ChBE Undergraduate Awards

Exceptional students recognized by the Department, Clark School, and professional societies.

Bad Virus Put to Good Use: Breakthrough Batteries

Virally structured nano-electrodes boost energy capacity tenfold.

ChBE Senior Named Merrill Presidential Scholar

YiAn Sun receives university honor.

A Longer Life for Lithium Ion Batteries

Wang, Guo create longer-lasting electrode using 3D polymer structure, silicon nanoparticles.

New Battery Research Highlighted by Discovery News, Nanowerk

Viruses used as structural template for lithium ion battery components.

Unit Ops Lab Featured on Capital Campaign Site

The Campaign Brief profiles recent upgrades.

C. Wang Wins NSF Grant for Battery Research

Award will fund development of electroanalytical techniques to make electric cars feasible.

C. Wang Part of Winning Nanobiotech Grant Team

State of Maryland funds innovative fuel cell research.

Lowe Bequest Funds Lab Innovations

Alumni encouraged to contribute to new endowed fund.

Wang Hosts Army Research Office Workshop

Two-day event focused on portable power supplies for soldiers.

ChBE Welcomes 3 New Faculty

Klauda, Wang arrive Fall 2007; Sriram Spring 2008.