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Tank-Treading of Erythrocytes in Strong Shear Flows via a Nonstiff
Cytoskeleton-Based Continuum Computational Modeling
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TFischell Department of Bioengineering and *Department of Chemical and Biomolecular Engineering, University of Maryland, College Park,
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ABSTRACT We develop a computationally efficient cytoskeleton-based continuum erythrocyte algorithm. The cytoskeleton is
modeled as a two-dimensional elastic solid with comparable shearing and area-dilatation resistance that follows a material law
(Skalak, R., A. Tozeren, R. P. Zarda, and S. Chien. 1973. Strain energy function of red blood cell membranes. Biophys. J.
13:245-264). Our modeling enforces the global area-incompressibility of the spectrin skeleton (being enclosed beneath the lipid
bilayer in the erythrocyte membrane) via a nonstiff, and thus efficient, adaptive prestress procedure which accounts for the
(locally) isotropic stress imposed by the lipid bilayer on the cytoskeleton. In addition, we investigate the dynamics of healthy
human erythrocytes in strong shear flows with capillary number Ca = O(1) and small-to-moderate viscosity ratios 0.001 <
A < 1.5. These conditions correspond to a wide range of surrounding medium viscosities (4—600 mPa s) and shear flow rates
(0.02—440 s~"), and match those used in ektacytometry systems. Our computational results on the cell deformability and tank-
treading frequency are compared with ektacytometry findings. The tank-treading period is shown to be inversely proportional to
the shear rate and to increase linearly with the ratio of the cytoplasm viscosity to that of the suspending medium. Our modeling
also predicts that the cytoskeleton undergoes measurable local area dilatation and compression during the tank-treading of the

cells.

INTRODUCTION

Because of the seminal work of Fischer et al. (1), it is known
that the erythrocytes elongate and orient to an ellipsoidal-
like shape while their membrane tank-treads around the
cell when the cells are subjected to a strong shear flow in
a more viscous suspending liquid. The frequency of the
tank-treading motion F,, was found to increase linearly
with the shear rate G of the flow. Recently Fischer (2), via
improved experimental measurements, verified the linear
increase of the tank-treading frequency F,, with the shear
rate, and also found that the slope of this dependence
increased weakly with the viscosity of the suspending
medium. In addition, Abkarian et al. (3), employing a cell
imaging method parallel to the shear plane, found that at
low shear stress (uG = 0.1 Pa) erythrocytes present an
oscillation of their inclination (which they called swinging
motion) superimposed to the long-observed steady tank-
treading motion.

We emphasize that studies on the flow dynamics of eryth-
rocytes still constitute a challenging problem in any type of
research. Experimental findings are still restricted, owing to
the cell’s micron size and constraints of the devices (e.g.,
specific flow-rate regimes or one view-angle (2,3)). In addi-
tion, the coupling of the fluid dynamics with the nonlinear
membrane tensions prohibits analytical solutions of the
erythrocyte motion and limits the usage of the state-of-
the-art three-dimensional computational methodologies
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(e.g., (4,5)). Thus, simplified models have been proposed
to describe the tank-treading, swinging, and tumbling
motions of erythrocytes in shear flows (e.g., (3,6,7)).

In the area of our interest (i.e., computational investiga-
tion), several continuum and molecular-based models have
been developed in the recent decades to study erythrocytes.
In the continuum models, treating the erythrocyte
membrane as a two-dimensional elastic solid with large
area-dilatation modulus results in a very stiff problem
with high computational cost for three-dimensional investi-
gations (e.g., (4,5)). On the other hand, cytoskeleton-based
molecular algorithms were able to model efficiently the
global area-incompressibility of the skeleton (e.g., (8-10))
but their applicability to flow problems is usually restricted
owing to large computational cost with thus very few three-
dimensional flow investigations (e.g., (11)).

This article has thus two main goals:

1. To develop a nonstiff methodology for the efficient deter-
mination of erythrocyte dynamics in viscous flows.

2. To investigate the tank-treading motion of the cells in
strong shear flows.

By combining the current experience on erythrocyte
computational algorithms via both continuum and molec-
ular modelings, we develop a computationally efficient
cytoskeleton-based continuum erythrocyte algorithm. In
addition, we investigate the dynamics of healthy erythro-
cytes in strong shear flows and for high surrounding
fluid viscosities that match those used in ektacytometry
systems (2,12).
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Tank-Treading of Erythrocytes

PROBLEM DESCRIPTION AND COMPUTATIONAL
ALGORITHM

Properties of healthy erythrocytes

A human erythrocyte is essentially a capsule (.e.,
a membrane-enclosed fluid volume) where the liquid inte-
rior (cytoplasm) is a concentrated hemoglobin solution and
behaves as a Newtonian fluid with viscosity u. = 6 mPa s
(13,14) at the human body temperature of 37°. In healthy
blood and in the absence of flow, the erythrocyte assumes
a biconcave discoid shape with a diameter of 7.8 um, and
a thickness varying in 0.8-2.6 um (15,16). The average
human erythrocyte has a surface area of 135 um?, and
a volume of 94 um’ at physiological osmolarity (15). (For
purposes of comparison, a sphere of the same volume
would have a surface area of only 100 um? and a radius
of a = 2.8 um.) Working with experimental observations
from interference microscopy, Evans and Fung (15) gave
an empirical equation to describe the half-thickness f(r) as
a function of the radial distance r from the central axis of
symmetry:

) =51~ (R)HC + C(ze)*C(RH

)

At physiological osmolarity (300 mO), Ry = 3.91 um,
Co - 0.81 um, C, — 7.83 um, and C4; = —4.39 um. In our
computations, this shape is employed as the elastic refer-
ence shape (i.e., the shape of the erythrocyte under quiescent
conditions), in agreement with experimental findings which
have demonstrated the erythrocyte shape memory, i.e., the
fact that after tank-treading an erythrocyte will always
reform its two dimples in the same distinct loci on the
membrane (17).

Fluid dynamics

We consider an erythrocyte in an infinite ambient fluid
undergoing flow. The interior and exterior fluids are Newto-
nian, with viscosities u. = Au and u, respectively. Owing to
the external flow and the cell’s small size, the gravitational
effects of a density difference between the two fluids (if any)
are negligible. In low-Reynolds-number flows, the govern-
ing equations in both fluids are the Stokes equations and
continuity.

The velocity u at each point x on the erythrocyte’s surface
Sp may be determined by the boundary integral equation
(1 +Au—2u" = .

4
Sp

S-Af — (1 — )uT-u-nds,

@

where the tensors S and T are known functions of geometry
while the unit normal n points into the surrounding fluid
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(18). Note that Af is the surface stress and u“ the imposed
external flow, e.g., a simple shear flow u* = G(z, 0, 0),
where G is the shear rate.

Our membrane description is based on the well-estab-
lished continuum approach and the theory of thin shells
(19). We emphasize that the thin-shell theory has proven
to be an excellent description of the membrane for a wide
range of artificial capsules and for red blood cells, where
the membrane thickness is several orders-of-magnitude
smaller than the size of the capsule/cell (19,20). To describe
the tensions on the erythrocyte membrane, we use the strain-
hardening constitutive law of Skalak et al. (21), which
accounts for both shearing and area-dilatation resistance.

The surface stress on the membrane is determined by the
in-plane stresses, i.e., Af = —Vs - 7, where the in-plane
stress tensor 7 is described by the law of Skalak et al., which
relates 7’s eigenvalues (or principal elastic tensions 7513, 6=
1, 2) with the principal stretch ratios Ag by

™ = G/‘{—jl(kf — 1+ CA[(nA)—1]) ©)
(to calculate ' 2, reverse the Ag subscripts (19)). The
shearing modulus G, introduces the (elastic) capillary
number Ca = uGal/G, as the ratio of viscous forces to
shearing forces on the membrane. Here u is the viscosity
of the surrounding fluid and a is the radius of a sphere
with the same volume as the erythrocyte (i.e., a = 2.8 um
at physiological osmolarity).

Note that the dimensionless parameter C is associated
with the area-dilatation modulus (scaled with the shearing
modulus). Analysis in the limit of small deformations shows
that the area-dilatation modulus is

K = G, (1 + 20),

while the surface Young modulus is (19)
E, = 2G,(1 + 2C)/(1 + O).

The capsule’s time evolution is determined via the kine-
matic condition at the interface dx/dt = u. The numerical
solution of the interfacial problem is achieved through
our interfacial spectral boundary element method for
membranes (18,20). The initial biconcave discoid interface
is divided into a moderate number Ny of elements (e.g., see
Fig. 2); on each element all geometric and physical variables
are discretized by using (N — 1)-order Lagrangian interpo-
lation based on the zeros of orthogonal polynomials. The
accuracy of our results was verified by employing smaller
time steps and different grid densities for several represen-
tative cases. (In particular, we employed Np = 10 spectral
elements with Nz = 11-14 basis points; for the time integra-
tion, we employed the fourth-order Runge-Kutta scheme
with time step in the range Ar = 107 °-10"*.) More details
on our interfacial spectral boundary methods may be found
in our earlier publications (18,20).
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Description of erythrocyte membrane

The erythrocyte membrane is a complex multilayered
object consisting of a 4-nm-thick lipid bilayer and an under-
lying elastic network of spectrin which is anchored to the
lipid bilayer through proteins. The lipid bilayer is essentially
a two-dimensional incompressible fluid with no shear
resistance, but the spectrin skeleton anchored to it exhibits
shear resistance like a two-dimensional elastic solid (16).
At low strains, optical tweezers have found that the
membrane-shear modulus is G, = 2.5 = 0.4 uN/m (22).
The area-dilatation modulus of the membrane (resulting
from the lipid bilayer) is K = O(1 N/m) and thus C =
0(10°) > 1 (13).

Continuum computational models commonly treat the
erythrocyte membrane as a two-dimensional elastic solid
with large area-dilatation modulus, e.g., by employing the
Skalak et al. law (Eq. 3) with large C. This introduces
computational difficulties especially for three-dimensional
problems (e.g., see (4,5)). In the case of the erythrocyte,
the area-dilatation resistance is much higher than its
shearing resistance (the parameter C = 0(105)), which
results in a very stiff problem. That is, the dilatation tensions
develop over a short timescale, which requires a very small
time step due to the employed explicit time integration, but
shearing tensions develop over a long timescale, which
necessitates a long simulation runtime. Previous investiga-
tors who used this approach weakened this requirement by
employing a much smaller moduli ratio than the true phys-
ical value (e.g., C = 0(100) (4,5)), in order to make the
problem computationally feasible. However, even this
smaller C, needed to achieve nearly area-incompressibility,
results in a large computational cost for three-dimensional
computations owing to the associated small time steps.

Another consideration for the description of the erythro-
cyte membrane is its measurable bending resistance with
reduced bending modulus (with respect to its shearing resis-
tance) (23),

Kp/a’G, = 0(107).

This is not large enough to affect the overall cellular defor-
mation (14), but it may prevent local buckling which could
otherwise occur under certain flow conditions. A realistic
model for the erythrocyte membrane must have a way to
account for this, although it will not necessarily do so by
representing explicitly the formation of bending moments.

Finally, a computational model may account for the
membrane viscosity, which is 0(1077) Ns/m (24). In the
continuum description this is usually achieved by the linear
addition of a surface viscosity model (e.g., the Kelvin-Voigt
model) to the equation describing the membrane stresses
(e.g., see Eq. 3 above (25)). However, such consideration
raises additional questions on the surface viscosity model
appropriate for the erythrocyte membrane and more gener-
ally on the linear (versus nonlinear) addition of a surface
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viscosity model into the membrane stresses. Because the
main goal of this article is to remove the stiffness in the
erythrocyte modeling associated with the local area-incom-
pressibility of the lipid bilayer, we do not explicitly consider
the viscosity of the erythrocyte membrane in our computa-
tional model (which is the same approach used by earlier
continuum models (4,5,7)).

NONSTIFF CYTOSKELETON-BASED CONTINUUM
MODELING

As discussed in Description of Erythrocyte Membrane, the
existing continuum membrane description focuses on the
lipid bilayer where it enforces local area-incompressibility,
e.g., via C > 1. The shearing tensions of the spectrin cyto-
skeleton are then transferred to the lipid bilayer and
accounted for via the first term (containing G) in the law
of Skalak et al. The requirement to enforce local area-
incompressibility of the lipid bilayer results in a stiff
computational problem as explained previously. However,
this formulation does not describe the spectrin cytoskeleton
(beyond the transferred shearing tensions) because the
cytoskeleton can undergo local area changes under the con-
straint of fixed total area being enclosed beneath the lipid
bilayer (26).

To derive a computationally efficient model for the eryth-
rocyte membrane, in this work we focus on the spectrin
cytoskeleton. This interface has shearing resistance; it
preserves its total area but may allow local area changes,
while (local) area-incompressibility tensions are transferred
to it from the lipid bilayer. Thus, we assume that our spatial
discretization explicitly represents the spectrin network, and
not the lipid bilayer. To describe the dynamics of the cyto-
skeleton we employ a continuum modeling; in particular,
the cytoskeleton is modeled as a two-dimensional elastic
solid with shearing and area-dilatation resistance that
follows the material law of Skalak et al. The numerical solu-
tion of the interfacial problem is achieved through our inter-
facial spectral boundary element method for membranes as
described earlier in Fluid Dynamics.

The mechanism by which a lipid bilayer enforces area-
incompressibility is a (locally) isotropic surface stress as
happens for fluid vesicles (27). An isotropic surface stress
can also be generated with an elastic membrane model by
employing prestress. (For example, Lac and Barthés-Biesel
(28) employed small prestress to represent elevated internal
capsule pressure and prevent local buckling.) Applying
a prestress into an elastic membrane model applies an
isotropic surface tension to an undeformed shape, or adds
a near-isotropic tension to a deformed shape. The prestress
can be generated by shrinking or expanding the elastic
reference shape, without changing the current shape, or by
scaling the stretch ratios Ag.

Based on our formulation, the in-plane tension 7 can be
written as
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™ + 7

T =

where 7* is the tension produced by elastic deformation of
the spectrin network, and 7/ is an isotropic tension such
that local surface-area incompressibility (V g - u = 0) would
hold for the lipid bilayer, which we do not represent explic-
itly. Using only the elastic law and applying a prestress, the
new tension produced can be written as

™ o+

T =

where 7 is the tension produced with no prestress, and s
the portion of the tension tensor added by the application of
prestress. When the surface is undeformed, 7 is perfectly
(locally) isotropic. When the surface is deformed, 7 is still
near-isotropic, with the degree of deviation from being
perfectly isotropic determined by the magnitude of the
parameter C for the constitutive law of Skalak et al. (small
C values introduce a larger nonisotropic component and
thus very small C should be avoided). Thus, we want to
approximate effect of the surface tension 7 of the lipid
bilayer by using a prestress to apply the tensor 7° such
that area is globally conserved.

Following Lac and Barthés-Biesel (28), we define the
prestress parameter « such that all lengths in the unde-
formed capsule would be scaled by (1 + «), relative to the
reference shape. Thus, for « = 0.05, for instance, the unde-
formed capsule would be 5% larger than the reference. Note
that this is mathematically equivalent to scaling the stretch
ratios by (1 + «). Fig. 1 a shows the normalized change
in area over a short time for « = 0.05 and 0.1. It is apparent
that prestress counteracts the shearing forces in the flow, to
dampen the initial surface area rise. However, area oscilla-
tions of >4% are still observed for the larger prestress.
Further, as the simulation continues, the prestress causes
contraction, and the surface area decreases significantly
below its initial value.

During transient dynamics of erythrocyte deformation
(such as its tank-treading motion in shear flows), the cyto-
skeleton prestress adjusts itself while the surface area of
the skeleton is (globally) fixed. While one may augment
the interfacial system by adding a constraint of fixed global
skeleton area and solving for the prestress, the nonlinear
nature of this constraint significantly complicates a
continuum algorithm. To determine the cytoskeleton pre-
stress efficiently, in this study we utilize an adaptive
prestress procedure, based on a standard discrete velocity-
type proportional-integral-derivative (PID) controller (29).
The goal is to solve for the prestress continually throughout
the transient dynamics via the control equation

oy = 0y + (Kp + Ki + Kd)en - (Kp + 2I{d)enfl
+ Kden,z (4)

to achieve a constant skeleton surface area. The prestress «,,
is adjusted at each time step based on «, ; from the
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FIGURE 1 (a) Time evolution of the surface area Sg of our (computa-
tional) erythrocyte (scaled by the surface area $° of its biconcave-disk
reference shape) in a simple shear flow with two different levels of
prestress, o = 0.05 and 0.1. Also shown are the results with adaptive
prestress, which effectively maintains a constant surface area. Parameters:
Ca=1.5and A =0.1. Law of Skalak et al. (21) with C = 1. (b) Time evolu-
tion of the prestress parameter « for a simple shear flow with Ca = 1.5 and
2.25 and A = 0.1, using the law of Skalak et al. with C = 1, with our adap-
tive prestress method.

previous step, the current error e,, in surface area, and, for
iterations after the initial two, the error from the previous
two steps e, and e,,_». K, K; and K, are the proportional,
integral, and derivative control parameters, respectively.
Using mainly the parameter settings K, = K; = K; = 1,
we obtained excellent control performance; Fig. 1 a shows
that the adaptive prestress method maintains a near-constant
surface area. We also obtained identical results using
smaller values for the control parameters, e.g.,

{K,,K:,K,} = {1,0.2,0},{0.1,0.1,0.1}, and {0.1,0.1,0}.

Thus, no attempt was made to tune further the control
parameters.

Via the adaptive prestress method, our interfacial algo-
rithm produces stable solutions for the erythrocyte dynamics
over long time periods in several flow types tested (e.g.,
shear and planar extensional flows). In all cases, the ratio
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of the surface area of the deformed shape to that of the
resting shape is always

|1 —Sp/SH|<107*.

We emphasize that our adaptive PID prestress procedure is
an efficient procedure to determine the cytoskeleton
prestress and mathematically equivalent to the full solution
of the augmented nonlinear constrained interfacial system.

It is of interest to note that in shear flows the prestress
parameter « shows periodic oscillations over time with
a period half that for the tank-treading motion, as shown in
Fig. 1 b, owing to the erythrocyte’s swinging motion (3,7).
For a given viscosity ratio A and Skalak parameter C, by
increasing the capillary number Ca, the prestress parameter
increases owing to the higher hydrodynamic forces which
require stronger membrane tensions. As seen in Fig. 1 b,
for Ca = 1.5 the adaptive prestress « is < 0.15 throughout
the simulation, and for Ca = 2.25, o < 0.2 throughout the
simulation. We emphasize that the small noise seen in the
time evolution of the prestress parameter (probably due to
the fact that the control is very aggressive in keeping a negli-
gible variation of the surface area Sp) does not affect the time
evolution of the interfacial shape, e.g., the evolution of the
erythrocyte dimensions or its inclination angle.

Utilizing different parameters C for the law of Skalak
et al., our method shows that C near 1 or higher produces
identical results for the erythrocyte dynamics. (As discussed
previously, very small C should be avoided, i.e., C < 0.5,
because they introduce a larger nonisotropic component in
the prestress tension and underestimate the erythrocyte
deformation.) In our modeling, the exact value of C >
O(1) is not important because both the term in the equation
for the law of Skalak et al. (Eq. 3) where the parameter C
appears and the prestress produce isotropic tensions; thus,
the parameter C and prestress complement each other in
producing the necessary isotropic tensions to globally
preserve the area of the spectrin skeleton.

Therefore in our work we have employed the dimension-
less parameter C = 1, which produces a nonstiff problem
and does not increase the computation cost. An additional
advantage is that prestress helps prevent local buckling,
thus fulfilling the role of bending resistance for a system
like the erythrocyte where the reduced bending modulus is
very low. It is of interest to note that C = 1 also represents
well the spectrin skeleton because at low strains optical
tweezers have found the area-dilatation and shear moduli
of the skeleton to be K¥ = 4.8 + 2.7 uN/m and G,” =
2.4 = 0.7 uN/m (30), which suggests that, for the spectrin
skeleton, C*” = 0.5.

ERYTHROCYTE DYNAMICS IN STRONG
SHEAR FLOWS

In this section we investigate computationally the erythro-
cyte dynamics in a simple shear flow 4™ = G(z, 0, 0) for
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high capillary numbers Ca = O(1) and small-to-moderate
viscosity ratios 0.001 < A < 1.5.These conditions corre-
spond to a wide range of medium viscosities (4—600 mPa s)
and shear flow rates (0.02-440 s~ !). The Reynolds
number for both the surrounding and the cytoplasm
flows is always negligible owing to the cell’s small size.
Our flow conditions match those used in ektacytometry
systems (1,2,12).

At the flow initiation, the erythrocyte has its equilibrium
biconcave discoid shape at physiological osmolarity given
by Eq. 1. In addition, the initial position of the undeformed
geometry is at an orientation angle & = 20° with the flow
direction, i.e., the x axis. All reported times are scaled
with the flow timescale G~'.

It is of interest to note that our computations depend only
on two dimensionless parameters—i.e., the capillary
numbers Ca and the viscosity ratio . When we convert
our results to actual variables (see later in Figs. 4 and 5 a),
we use u. = 6 mPa s and a = 2.8 um, as well as the average
value of the membrane shear modulus at low strains G, =
2.5 uN/m (22) because our computations involve rather
small and moderate deformations. (In our work, the cell
dimensions vary in the range of —20-40%.) Employing
smaller or higher values of G, does not change our results
presented in these two figures but shifts our computed points
to smaller or higher shear rates, respectively.

After an initial transient period, the erythrocyte assumes
an inclined ellipsoidal conformation owing to the strong
shear flow while its membrane tank-treads around the cell
owing to the rotational component of the shear flow, as
found in experimental systems (e.g., (1,2)). For Ca = 1.5
and A = 0.1, the transition from a biconcave disk to an ellip-
soidal shape occurs from ¢t = 0 to ¢ = 2, as illustrated in
Fig. 2. In addition, the biconcave reference shape introduces
periodic oscillations into the tensions produced as the
deformed erythrocyte tank-treads, i.e., the dimple regions
of the original biconcave geometry deform differently
than the edge regions as they pass around the surface
contour (3,7). Thus, at steady state, the cell shape oscillates
around a mean value with a period half that for the tank-
treading motion (owing to the symmetry of the biconcave
reference shape), as experimentally found recently for
erythrocytes in weak shear flows (3).

Comparison to ektacytometry results

Ektacytometry systems have been developed to measure the
deformability of the erythrocyte by observing the deforma-
tion behavior of individual cells, or average deformabilities
for populations of cells (1,2,12). In these devices, the flow
pattern is a simple shear flow (or a good approximation of
it) while the deformed erythrocyte is not observed in the
plane of shear but from above the shear plate device. In
our computations, u* = G(z, 0, 0) and thus the plane of
shear is the xz plane. In our terminology, we can say that
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FIGURE 2 Shape transition from a biconcave disk to an ellipsoid for an
erythrocyte in a simple shear flow with Ca = 1.5 and A = 0.1. The erythro-
cyte shape is plotted row-wise at times ¢ = 0, 0.2, 0.4, 0.6, 1, and 2, as seen
slightly askew from the shear (i.e., xz) plane.

ektacytometry observes the deformed erythrocyte projected
as an ellipse on the xy plane.

The deformation parameter computed from the largest
and smallest semiaxes of this ellipse, L, and L,, respectively,
and reported by researchers using ektacytometry, we will
denote D,, Note that

Dy = (LX - Ly)/(LX + Ly)'

Because ektacytometry does not follow individual cells over
time but uses a large number of them, and because the eryth-
rocytes’ shape oscillates with time in a shear flow, the exper-
imentally reported deformation D,, corresponds to the
average value of the cells deformation in the xy plane over
time and over the erythrocyte population.

Fig. 3 shows results from ektacytometry (12) compared
with our computational data for the time-averaged deforma-
tion D,, at steady-state for a range of high capillary
numbers. Note that the viscosity ratio for ektacytometry
systems usually ranges between 0.1 and 0.2; thus, in
Fig. 3 we include our results for both viscosity ratios.
We emphasize that the membrane viscosity does not affect
the erythrocyte orientation (11) and deformation in shear
flows (Dr. D. A. Fedosov and Prof. G. E. Karniadakis,
Brown University, personal communication, 2010); thus,
our results on the ektacytometry deformation are not
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FIGURE 3 Comparison of our computational results with ektacytometry
findings reported in Fig. 3 of Hardemann et al. (12). The experimental
results for the ektacytometry deformation D, (dashed lines) were con-
verted to the capillary number domain using G, = 3.3, 2.4, and 1.7 uN/m.
(Note that these experimental measurements via the LORCA ektacytometer
have negligible standard deviation (12).) Also displayed (as solid lines with
data points) is the time-average deformation D,, computed by our method
at steady state for A = 0.1 and 0.2.

affected by the omission of membrane viscosity in our
computations.

Our computations capture two important aspects of the
relationship between D,, and capillary number (or wall
shear stress). First, the relationship is logarithmic for this
range of capillary numbers. Second, using a log-scale for
capillary number, our computations produce a slope consis-
tent with the experimental results. In addition, our results
provide insight on the shear modulus of the erythrocyte
membrane at low strains. In Fig. 3 we have converted the
experimental results for the ektacytometry deformation
D,, from the wall shear stress 7,,,; = uG to the capillary
number domain Ca = ao,./G, by using G, = 1.7,
3.3 uN/m, i.e., two standard deviations around the mean
value found by optical tweezers, G; = 2.5, 0.4 uN/m (22).
As seen in this figure, our computations fall inside the range
valid for most red blood cells. When we convert the exper-
imental data using Gy = 2.4 uN/m, the experimental and
computational curves coincide as shown in Fig. 3, which
may suggest that the sample used in the experimental
measurement had a shear modulus very close to the average
value found by optical tweezers, G, = 2.5 uN/m (22).

Our computational results on the shear rate dependence of
the tank-treading frequency F, (defined as the inverse of the
tank-treading period P,,) of red cells in a simple shear flow
are shown in Fig. 4. Our computations show that the tank-
treading frequency F,, increases linearly with the shear
rate, as reported in the experimental findings of Fischer
et al. (1) and other recent experiments (2).

We emphasize that our computations do not account for
the viscosity of the erythrocyte membrane which is expected
to slow down the tank-treading motion. If we assume that
the membrane viscosity is the main reason for the fact that
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FIGURE 4 Comparison of our computational results with experimental
findings from Donor 3 reported in Fig. 2 of Fischer (2) for the tank-treading
frequency F,, as a function of the shear rate G in a log-log plot. The compu-
tational results are valid for capillary number Ca = 1.5, 2, and 2.25
(symbols <&, O, and +, respectively) and viscosity ratio A in the range
[0.001, 1]. The experimental results are valid for surrounding medium
viscosity u = 12.9, 28.9, 53.9, and 109.3 mPa s (symbols [], ¢, @,
and M, respectively) measured at room temperature. Also displayed is
a solid line with slope 1 to show the linear increase of F;; with the shear rate.

our computations predict a higher tank-treading frequency
as shown in Fig. 4, then our comparison suggests that the
membrane viscosity slows down the tank-treading motion
by a factor close to 2. This is consistent with the estimation
of Fischer (24) that in the tank-treading erythrocytes the
energy dissipation in the membrane is of the same order
of magnitude as in the cytoplasm.

Dependence of the tank-treading frequency
on the medium viscosity

We investigate now the dependence of the tank-treading
frequency on the medium viscosity. As seen in Fig. 5 a,
we found that the slope of this dependence decreases weakly
with the viscosity ratio A = u./u and thus it increases weakly
with the viscosity of the suspending medium g, as reported
in the recent experimental study of Fischer (2).

Proceeding further, we were able to identify the exact
dependence of the tank-treading speed on the viscosity of
the suspending medium. As seen in Fig. 5 b, the tank-
treading period P, = ,fl (i.e., the time required for
a full revolution of the erythrocyte membrane) increases
linearly with the viscosity ratio A while it is inversely
proportional to the shear rate G. Thus,

G G

F., = = ,
" CA+ G Cip./u + Co

®

where the constants are C; = 10.5 and Cy = 16.

The increase of the tank-treading period with the
viscosity ratio is consistent with the increased hydrody-
namic forces in the cytoplasm, which slow down the rotation
of the inner fluid and thus, the erythrocyte membrane.
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FIGURE 5 (a) Tank-treading frequency F,, as a function of the shear rate
G for viscosity ratio A = 0.1, 0.2, 0.4, 0.6, and 1 and capillary number Ca in
the range [1.25, 3]. (b) Tank-treading period GP, as a function of the
viscosity ratio A for Ca = 1.5, 2, and 2.25 (symbols <, O, and +, respec-
tively). The regression lines for the three flow rates are GP,, = 10.2A4 + 15.8,
GP,,=10.54 + 16.0, and GP,; = 10.54 4 16.4. Also included are the exper-
imental findings from Fig. 2 of Fischer (2); these data are valid for
surrounding medium viscosity u = 12.9, 28.9, 53.9, and 109.3 mPa s
(symbols [1, ¢, @, and W, respectively) and were converted to viscosity
ratio A using . = 6 mPas. The lines denoted as D1, D2, and D3 connect the
arithmetic average for a given viscosity ratio of the experimental data from
Donors 1, 2, and 3, respectively.

We note that our results are in very good agreement with
the computations of Sui et al. (5), who employed the tradi-
tional continuum erythrocyte modeling utilizing the law of
Skalak et al. with large C and who also neglected the
membrane viscosity. Their study is restricted to unity/
viscosity ratio, and found a nondimensional frequency2n/
(GP,) = 0.23 for capillary number Ca = 1.5 as shown in
their Fig. 7. Our computations for this viscosity ratio and
capillary number shown in Fig. 5 b reveal that this frequency
is 0.24.

To provide a better comparison between our own predic-
tions and the experimental findings, in Fig. 5 b we also
include the data from Fig. 2 of Fischer (2), which are valid
for four surrounding medium viscosities, © = 12.9, 28.9,
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53.9, and 109.3 mPa s. For a given viscosity, the experi-
mental findings show a wide variation, probably due to the
inherent differences between erythrocytes. Owing to the
variation of the experimental data and the fact that they
are valid for only four viscosity ratios, it is difficult to verify
or reject our computation prediction on the relationship
between GP,, and A. However, connecting the arithmetic
average for a given viscosity ratio of the data from the three
donors (lines D1, D2, and D3 in Fig. 5 b) does suggest
a linear increase of GP,, with A for the three largest viscosity
ratios. Our understanding is that experimental findings for
more of the surrounding medium viscosities are needed,
accompanied, if possible, with measurements of the actual
properties of the cells to reduce the data variation.

Is the surface area of the spectrin skeleton
locally preserved?

Owing to the fact that the surface area of the spectrin skel-
eton is globally, but not locally, preserved, a question natu-
rally arises on the magnitude of the local area changes of the
cytoskeleton for the problem studied in this work (i.e., tank-
treading of erythrocytes in strong shear flows).

This problem has been studied by Fischer (26) who, via
a simplified continuum model, concluded that in fast eryth-
rocyte processes (such as tank-treading in vivo or in ektacy-
tometry systems) there is no time for local area changes
while quasistatic (i.e., long) processes (such as micropipette
experiments (31)) may be accompanied with local area
variations of the spectrin skeleton. (Discussion on older
modeling of cytoskeleton’s local surface area can also be
found in Fischer’s work (26).)

Before we present the results of our cytoskeleton-based
modeling, we wish to clarify the following issues involving
the earlier work/modeling and its connection to our own
modeling.

First, Fischer’s predictions are rather rough for a number
of reasons, including the simplifications of the employed
model and the estimate of the value of the parameters
involved in his model, as the author commented in the
conclusions of his article (26). Thus, the true skeleton
behavior can diverge significantly from Fischer’s predic-
tions.

Second, our understanding is that Fischer’s analysis
formally applies to the local area changes during the two
processes he studied, and not with respect to the equilibrium
biconcave disk geometry. For example, his conclusion for
local area incompressibility during tank-treading in vivo
or in ektacytometry systems refers to local area changes
during the steady-state tank-treading motion. However, the
tank-treading ellipsoidal erythrocyte in strong shear flows
differs significantly from its equilibrium biconcave disk
shape; thus, Fischer’s conclusion may permit local area
changes between the equilibrium biconcave and tank-
treading ellipsoidal shapes.
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In addition, we emphasize that conceptually Fischer’s
continuum modeling (26) differs significantly from our
own. Fischer described the integral proteins which connect
the cytoskeleton with the lipid bilayer as fenceposts on the
cytoskeleton, and assumed that the controlling step is the
relative motion of these proteins and the lipids. As described
in the earlier work, a local change in surface area of the
cytoskeleton involves a relative motion between lipid mole-
cules and intrinsic proteins; this motion requires sufficient
time owing to friction. For fast processes (e.g., tank-treading
in ektacytometry systems or in vivo), Fischer concluded that
there is no time for a relative motion, and thus, the surface
area of cytoskeleton should be locally conserved. On the
other hand, in our continuum membrane modeling we do
not consider explicitly the intrinsic proteins; therefore, we
assume that the controlling step in the deformation of the
cytoskeleton’s surface area is the interaction of the hydrody-
namic forces of the applied shear flow with the membrane
tensions. That is, we assume that the intrinsic proteins
diffuse fast enough to accommodate any local area changes
imposed on the cytoskeleton by the applied flow.

In Fig. 6 a, we present the time evolution of the differen-
tial surface area for four representative spectral discretiza-
tion points on the erythrocyte membrane for typical shear
flow conditions (i.e., A = 0.1 and Ca = 1.5). Our computa-
tional results for all the discretization points used show that,
with respect to the equilibrium biconcave disk geometry, the
cytoskeleton local area increases by almost 30% and
decreases by almost 20%. In addition, during the steady-
state tank-treading motion, the cytoskeleton local area
changes by nearly =+ 10%.

Thus, for the physical problem studied in this work, the
cytoskeleton undergoes measurable local area dilatation
and compression. To show how much these local area
changes accumulate in larger portions of the cytoskeleton,
in Fig. 6 b, we plot the time evolution of the surface area
of the spectral elements used in our computations. With
respect to the equilibrium shape, large portions of the cyto-
skeleton show an almost 17% increase in surface area;
however, during the steady-state tank-treading motion,
the same surface elements show a smaller area change of
almost =8%. We note the similar results that we obtain
for higher viscosity ratios, e.g., A = 1.

Our computational modeling also predicts that the dimple
regions of the quiescent biconcave-disk shape (e.g., the two
spectral elements forming the dimple in the first erythrocyte
view seen in Fig. 2) show the largest area increase; that the
edge regions along the flow direction show the largest area
decrease; and that the lateral edge regions show the smallest
area variation.

It of interest to note that both the differential surface area
Sp and the surface area of the spectral elements Sk presented
in Fig. 6 show periodic oscillations around a mean value
owing to the cell’s swinging motion; the period of oscilla-
tions is half that for tank-treading motion, as found for the
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FIGURE 6 (a) Time evolution of the differential surface area Sp (scaled
with its original value Sp°) for the spectral discretization point at the middle
of the spectral elements for an erythrocyte tank-treading in shear flow with
A = 0.1 and Ca = 1.5. Note that Sp is determined based on the standard
mathematical definition of the differential area of a surface x(&,7),
Sp= Hg% X (%Hdi dn. (b) Time evolution of the surface area of the spectral
elements Sg (scaled with its original value S5%) for the same conditions as in
panel a. Note that out of the Ng = 10 spectral elements used in our compu-
tations, only four are independent (and show different behavior) owing to
symmetry reasons. With respect to the first cell shown in Fig. 2, the location
of the spectral elements presented here is (solid line) upper dimple; (long-
dashed line) lower dimple; (short-dashed line) edge region along the flow
direction; and (dash-dotted line) lateral edge. (The phase difference in
the time evolution of the two dimple elements results from their different
location; e.g., the middle point on the lower dimple needs more time to
go to the edge of the erythrocyte’s ellipsoidal shape during tank-treading.)

inclination oscillations for erythrocytes in weak shear flows
(3,7). We also note that the small noise in the curves shown
in Fig. 6 is of numerical origin (due to the local nature of the
properties plotted and the finite discretization) and irrelevant
to the present adaptive prestress procedure, because we also
find the same noise for these properties even in our compu-
tations with capsules in shear flows.

DISCUSSION

In this article, we have developed a computationally effi-
cient cytoskeleton-based continuum erythrocyte algorithm.
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The cytoskeleton is modeled as a two-dimensional elastic
solid with comparable shearing and area-dilatation resis-
tance that follows the material law of Skalak et al. (21). It
is of interest to note that in their 1973 article (21), Skalak
et al. proposed to use a large area-dilatation resistance
for the erythrocyte modeling (or C >> 1) because they
modeled the entire membrane, i.e., the idea that the cyto-
skeleton can undergo local area changes came up later
(26). However, the law of Skalak et al. is general and
able to describe any (strain-hardening) membrane with
any area-dilatation resistance (e.g., (18,19)). Our modeling
enforces the global area-incompressibility of the spectrin
skeleton via a nonstiff, and thus efficient, adaptive prestress
procedure which accounts for the (locally) isotropic stress
imposed by the lipid bilayer on the cytoskeleton. The
prestress procedure also helps prevent local buckling
and thus accounts for the role of the bending resistance of
the erythrocyte membrane. In this article we have combined
our nonstiff continuum erythrocyte modeling with our
spectral boundary element method for elastic capsules
(18) to solve the interfacial problem; however our cytoskel-
eton modeling is general and can be combined with any
membrane interfacial method.

As discussed in Nonstiff Cytoskeleton-Based Continuum
Modeling, our understanding is that the spectrin skeleton
should be under prestress owing to the area-incompressibil-
ity tensions transferred to it from the lipid bilayer. It is of
interest to note that the cytoskeleton-based molecular model
of Discher et al. (9) also found that prestress is necessary for
optimal agreement with fluorescence imaging experiments
in the case of the large static deformations in micropipette
aspiration. More generally, cellular tensegrity models which
include cytoskeleton prestress have also been proposed for
mammalian cells to link mechanics to structure at the
molecular level (32).

During transient dynamics of erythrocyte deformation
(such as its tank-treading motion in shear flows), the cyto-
skeleton prestress should adjust itself while the surface
area of the skeleton is (globally) fixed. While one may
augment the interfacial system by adding a constraint of
fixed global skeleton area and solving for the prestress,
the nonlinear nature of this constraint significantly compli-
cates a continuum algorithm. In order to determine the
cytoskeleton prestress efficiently, in this study we utilize
a PID controller so that the surface area of the skeleton is
(globally) fixed. The time evolution of prestress shown in
Fig. 1 b does not suggest an unrealistic prestress adjustment
to satisfy the fixed surface area, while the PID prediction of
the cytoskeleton prestress is mathematically equivalent to
the full solution of the augmented nonlinear constrained
interfacial system.

In addition, we have investigated the dynamics of healthy
human erythrocytes in strong-shear Stokes flows with capil-
lary number Ca = O(1) and small-to-moderate viscosity
ratios 0.001 < 4 < 1.5 that match the conditions used in
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ektacytometry systems. Our computations capture two
important aspects of the relationship between cell deforma-
tion and capillary number (or wall shear stress): the depen-
dence is logarithmic for the employed range of shear rates,
while using a log-scale for capillary number our method
produces a slope consistent with experimental results. By
comparing our computational results and ektacytometry
findings (12) on the cell deformation, our computations
fall inside the range for G, valid for most red blood cells
at low strains, i.e., 1.7-3.3 uN/m (22).

Our computations show that the tank-treading frequency
F,, of the erythrocyte membrane increases linearly with
the shear rate, as reported in the experimental findings
of Fischer et al. (1) and other recent experiments (2). In
addition, our results suggest that the membrane viscosity
(which is not accounted for in our present computations)
slows down the tank-treading motion by a factor close
to 2. Our modeling also predicts that the tank-treading
period GP,, increases linearly with the ratio of the cytoplasm
viscosity to that of the suspending medium. This depen-
dence is consistent with the increased hydrodynamic forces
in the cytoplasm, which slow down the rotation of the inner
fluid and thus the erythrocyte membrane. Our findings
provide insight on the effects of the paraproteinemia, i.e.,
a family of disorders associated with elevated plasma
protein levels and thus higher plasma viscosity (16).

Our cytoskeleton-based modeling also provides insight
on the local surface area changes of the spectrin skeleton
during the tank-treading of the cells, and thus complements
the earlier work of Fischer (26) and Discher et al. (31). In
particular, our work shows that during tank-treading, the
cytoskeleton undergoes measurable local area dilatation
and compression, as also found experimentally via micropi-
pette experiments at large static deformations (31).
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Supercomputing Applications in Illinois.
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