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The relaxation mechanism of an initially straight flexible or stiff polymer chain of length N in a
viscous solvent is studied through Brownian dynamics simulations covering a broad range of time
scales. After the short-time free diffusion, the chain’s longitudinal reduction R2

k
�0� � R2

k
� Nt1=2 at

early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a
quasisteady T � Nt�1=2 relaxation of tensions associated with the deforming action of the Brownian
forces. Stiff chains with a persistence length E � N are shown to exhibit a late intermediate-time
longitudinal reduction R2

k
�0� � R2

k
� N2E�3=4t1=4 associated with a T � N2E�3=4t�3=4 relaxation of

tensions affected by the deforming Brownian and the restoring bending forces.
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The present study considers the conformational relaxa-
tion of a single flexible or stiff polymer chain from an
initial straight configuration in a viscous solvent. This
problem commonly arises when strong flows are turned
off in both industrial and biological applications. The
problem is also motivated by recent experiments with
single DNA molecules relaxing after being fully extended
by applied forces as well as by the recent development of
microdevices involving stretched tethered biopolymers
[1]. Our interest lies in understanding the relaxation
mechanism for flexible and stiff polymers, and thus our
results are applicable to a wide array of both synthetic
polymers, such as polyacrylamides, Kevlar, and polyest-
ers as well as biopolymers, such as DNA, actin filaments,
microtubules, and rodlike viruses.

In recent years considerable progress has been made in
understanding the properties of semiflexible polymers
near equilibrium [2–5]. In this regime the transverse
fluctuations of semiflexible polymers were found to scale
as t3=4, while the longitudinal fluctuations scale as t7=8

[2,3]. With this study, we want to understand the relaxa-
tion mechanism of a specific problem far from equilib-
rium where a complete theory of the relaxation process is
lacking. We show that the early longitudinal relaxation,
being associated with a quasisteady relaxation of link
tensions of a Brownian nature, is valid for any chain
stiffness. Stiff chains are shown to exhibit a late longitu-
dinal relaxation associated with the cumulative effect of
the deforming Brownian forces and the restoring bending
forces on the link tensions. The techniques we develop to
understand the relaxation mechanism may be useful for a
wide array of problems in polymer rheology.

To describe the polymer chain, Brownian dynamics
simulations are employed based on a discretized version
of the wormlike chain model described in our previous
publication [5]. This method considers a bead-rod model
with fixed bond lengths and ignores hydrodynamic inter-
actions among beads as well as excluded-volume effects
[6]. The polymer chain is modeled as NB � �N � 1� iden-
tical beads connected by N massless links of fixed length
0031-9007=04=93(21)=217801(4)$22.50 
b (which is used as the length unit). The position of bead i
is denoted as Xi, while the link vectors are given by di �
Xi�1 � Xi. The polymer stiffness is accounted by a bend-
ing potential proportional to the square of the local
curvature, 
bend � E

PN�1
i�1 �1� di 	 di�1=b

2�. The bend-
ing energy E is related to the persistence length Lp via
E=kBT 
 Lp=b, where kB is the Boltzmann constant.
Assuming that the bead inertia is negligible, the follow-
ing Langevin equation is obtained:

�
dXi

dt
� Fbend

i � Frand
i � Fcor

i � Ften
i ; (1)

where the friction coefficient � is assumed to be uniform.
Fbend

i and Frand
i are the bending and the Brownian forces,

respectively. The corrective potential force Fcor
i is added

so that the equilibrium probability distribution of the
chain configurations is Boltzmann [6]. The force Ften

i �
Tidi � Ti�1di�1, where Ti is a constraining tension along
the direction of each link di, ensures the link inextensi-
bility. The Brownian forces give rise to a microscopic
time scale associated with the diffusive motion of one
bead, �rand � �b2=kBT, which is used as the time unit.
The computations were performed on multiprocessor
computers provided by the National Center for
Supercomputing Applications (NCSA) in Illinois.

To determine the chain’s conformational evolution, we
monitor the three eigenvalues of the chain’s gyration
tensor G �

PNB
i�1�Xi � Xc��Xi � Xc�=NB, where Xc �PNB

i�1 Xi=NB is the center of mass of the chain. The first
(largest) eigenvalue G1 reveals the chain’s length Rk,
while the other two eigenvalues G2 and G3 can be used
to monitor the chain’s width R?. These configuration
functions involve all the chain’s length scales and thus
the polymer relaxation can be determined over extended
time scales by employing scaling laws [7].

The length reduction of an initially straight flexible
polymer immediately after the chain is left to relax is
shown in Fig. 1(a). This figure reveals that, until times t�
N�2, the chain’s length reduction is
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R2
k
�0��R2

k
�N2t or �Rk 
 Rk�0��Rk �Nt: (2)

This behavior results from the corresponding free diffu-
sion in the transverse motion of each bead, i.e., R2

? �

d2? � t, where d? is the transverse component of the link
vectors [6,7]. Just after the chain is left to relax, the
transverse component of the tension force on each bead
scales as Ften

? � Td? � N2t1=2, where T � N2 are the
tensions along the (nearly) straight chain, while the
transverse component of the effective Brownian force
on each bead scales as Frand

? � t�1=2 [6,7]. Thus at short
times t � N�2, Ften

? � Frand
? and the beads show a free

transverse diffusion d2? � t. Because of the link inexten-
sibility, the longitudinal length of each link is shortened
as b2 � d2

k
� d2? � t, which results in a chain’s length

reduction R2
k
�0� � R2

k
� N2b2 � N2d2

k
� N2t.

At the transition times �ten � N�2 the transverse ten-
sion force on each bead balance the corresponding
Brownian force, Ften

? � Frand
? � N, and the free diffusion

of the beads is arrested. During intermediate times
N�2 � t � N2, the participation of the chain’s different
length scales results in a slower longitudinal reduction
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FIG. 1 (color online). Scaling law for the chain’s length
reduction R2

k
�0��R2

k
�G1�0��G1 (where G1 is the first eigen-

value of the gyration tensor) at (a) short times and (b) in-
termediate times for a completely flexible chain (E � 0). [Note
that �rouse is the exact value of the time scale for the relaxation
of the first normal mode of the Rouse model; for long chains
�rouse��randN

2=�3�2��N2 [8].] Both laws were generated by
employing chains with N�5, 10, 20, 40, 80, 160, and 400.
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R2
k
�0� � R2

k
� Nt1=2 or �Rk � t1=2; (3)

as depicted over eight time decades in Fig. 1(b). As shown
in our earlier study [7], during these times the chain
width grows as R? � N�1=4t3=8; thus the configuration
relaxation is anisotropic at intermediate times.

The length reduction of the polymer chain reveals the
longitudinal component of the force acting on the entire
chain,

Fk � �ch
d�Rk

dt
� Nt�1=2; (4)

where �ch � N is the friction coefficient for the entire
chain. This force is the tension force along the polymer
chain, Ften

k
� Tdk � Nt�1=2, since the tensions during

intermediate times relax as T � Nt�1=2 while the polymer
chain is still practically straight, i.e., dk � 1 [6,8]. Thus
the relaxation of a flexible chain is associated with the
relaxation of tension forces from a magnitude of O�N2� at
times �ten � N�2 to a magnitude O�1� at times N2. The
chain’s length reduction and the corresponding longitu-
dinal force satisfy the equipartition of energy, i.e.,
Fk�Rk � NkBT, which reveals that during intermediate
times there exists a quasisteady equilibrium of the tension
forces along the chain length.

For stiff polymer chains E � N there is an additional
force which affects the chain evolution, the bending force
Fbend. Immediately after the chain is left to relax, the
longitudinal bending force is negligible compared to the
O�N2� strong longitudinal tension force. Thus, initially
the chain’s stiffness is expected to have a negligible effect
on the longitudinal relaxation process; the bending forces
should affect only the late behavior of the chain relaxa-
tion. Therefore, stiff chains are expected to show two
intermediate-time behaviors. The same conclusion is de-
rived if we consider the influence of the forces in the
transverse direction which are responsible for the initia-
tion of the polymer relaxation.

In particular, immediately after the chain is left to
relax, the transverse Brownian force Frand

? � t�1=2 domi-
nates the dynamics and the beads show a free sideways
diffusion d2? � R2

? � t, identical to that for the flexible
chains. For long enough stiff chains, i.e., for N � �E=N�,
the transverse tension force on each bead Ften

? �Td?�

N2t1=2 grows faster than the corresponding bending force
Fbend
? �Ed?�Et1=2. (The scaling for this force can be

readily derived from the definition of the bending energy

bend.) For these chains, the transition from short to
intermediate times occurs when Ften

? on each bead balan-
ces Frand

? at times �ten�N�2; the free diffusion is arrested
and then the chain shows a slower transverse evolution
R2
?�N�1=3t5=6, as seen in our earlier work [7]. However,

for short enough stiff chains, i.e., for N 
 �E=N�, the
transverse bending force Fbend

? on each bead balances first
217801-2
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Frand
? at times �bend � E�1, i.e., the shortest time scale

associated with the transverse fluctuations of two succes-
sive links due to the bending energy. Afterwards, these
chains show a transverse evolution R2

? � E�1=4t3=4 until
the end of the intermediate-time behavior at times �? �
N4=E, i.e., the longest bending time scale associated with
the entire polymer chain. Therefore, long stiff chains
show two intermediate-time behaviors; by matching the
two growing rates for R2

?, the transition from the early to
the late intermediate-time behavior was also identified as
the times �mid � N4=E3 [7].

Based on the discussion above, after a long stiff chain
is left to relax, its length is reduced as R2

k
�0� � R2

k
� N2t

until times �ten � N�2; this reduction results from the
transverse free diffusion of each bead and the link inex-
tensibility as explained previously for flexible chains.
[The corresponding figure is similar to Fig. 1(a) and has
been omitted.] During the early intermediate times
�ten � t � �mid, the chain’s length reduction is identical
to that for flexible chains, i.e., R2

k
�0� � R2

k
� Nt1=2 or

�Rk � Rk�0� � Rk � t1=2, as shown in Fig. 2 for stiff
chains with E=N � 10. Therefore, the dominant longitu-
dinal force Fk � Nt�1=2 is again derived from Eq. (4)
above and is associated with the tensions necessary to
ensure link inextensibility against the action of the de-
forming Brownian forces.

In the case of short stiff chains N 
 �E=N�, the initial
length reduction due to the transverse free diffusion of
each bead is again R2

k
�0� � R2

k
� N2t; however, the short-

time behavior is now extended up to �bend � E�1, as
shown in Fig. 3(a). During the intermediate times
�bend � t � �? the chain’s length reduction is slower
as shown in Fig. 3(b) over seven time decades,

R2
k
�0��R2

k
�N2E�3=4t1=4 or �Rk�NE�3=4t1=4: (5)
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FIG. 2 (color online). Scaling law for the chain’s length
reduction R2

k
�0� � R2

k
�G1�0� �G1 of long stiff chains with

E=N � 10 at early intermediate times. The length reduction
G1�0� �G1 has been scaled with its magnitude N3=E3=2 at the
end of the early intermediate times, �mid. Also shown are the
free diffusion at short times and the t1=4 evolution at late
intermediate times.
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This behavior also constitutes the late intermediate-time
behavior of long stiff chains for times �mid � t � �?.

The solvent friction resists the chain’s length reduction
and thus the longitudinal component of the dominant
force acting on the polymer chain is given by

Fk � �ch
d�Rk

dt
� N2E�3=4t�3=4: (6)

This force should be the longitudinal tension force Ften
k

�

Tdk � T (since dk � 1), and thus during the late inter-
mediate times the tensions should relax as T �

N2E�3=4t�3=4. To verify our conclusion on the tension
relaxation, we numerically determined the average ten-
sions along the polymer chain and found the same scaling
law behavior, as shown in Fig. 4(a). The dependence of
the tensions on the chain stiffness E verifies our earlier
conclusion that only during the late intermediate times
the chain stiffness should affect the longitudinal
relaxation.

Thus for both flexible and stiff chains, the entire poly-
mer relaxation is caused by the relaxation of tensions. A
completely straight chain has accumulated T � O�N2�
tensions required to preserve the link length against the
action of the deforming Brownian forces. This applies to
both flexible and stiff chains since for a straight chain the
bending forces are identically zero. For a flexible chain,
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FIG. 3 (color online). Scaling law for the chain’s length
reduction R2

k
�0� � R2

k
�G1�0� �G1 at (a) short times and

(b) (late) intermediate times for stiff chains with E=N � 10.
The curves were generated by employing chains with N � 5,
10, 40, and 100.
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FIG. 4 (color online). Tension relaxation at the late inter-
mediate times for stiff chains with E=N � 10. (a) Scaling
law for the total tensions T. (b) Relaxation of the tension
components for a chain with length N � 100. Each component
represents the tensions required to preserve the link inextensi-
bility against the action of the corresponding force appearing
in (1) above.
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the single intermediate-time behavior is associated with
the tension relaxation due to the deforming Brownian
forces. The same conclusion is valid for the early
intermediate-time relaxation of stiff chains where the
influence of the longitudinal bending forces is negligible
due to the nearly straight chain configuration. For a stiff
chain, at the transition times �mid the tension relaxation
changes nature since afterwards it is affected by both
Brownian and bending forces, as seen in Fig. 4(b). This
figure reveals that the Brownian and bending forces have
opposite effects on the link tensions: the former try to
change the link length, while the latter try to preserve the
link length. [Note that in Fig. 4(b) we plot �Tbend.] The
component of the tensions which is associated with the
(small) corrective potential force Fcor

i is negligible as
expected. The cumulative effect of Trand and Tbend pro-
duces a total tension T decaying as t�3=4.

Therefore, the early intermediate-time behavior shown
in Figs. 1(b) and 2 above is a universal behavior valid for
any polymer chain with 0 
 E 
 N2, i.e., from the com-
pletely flexible E � 0 up to the ultrastiff limit E � N2.
Ultrastiff chains E � N2 (i.e., a stiffness regime we
identified in our earlier work [5]) show �bend � �ten and
thus are expected to follow only one intermediate-time
217801-4
behavior identical to late intermediate-time behavior of
stiff chains shown in Fig. 3(b) above. Thus, the late
intermediate-time behavior is valid for any stiff chain
E � N.

We emphasize that it is the early longitudinal relaxa-
tion which constitutes a universal behavior for any chain
stiffness, and not the corresponding transverse evolution
which is affected by the bending forces. For a given
length reduction Rk�0� � Rk, a flexible chain is more
likely to relax transversely through shorter modes than
a stiff chain; this results in a slower transverse growth for
the flexible chain, �R2

?�flexible � N�1=2t3=4 
 �R2
?�stiff �

N�1=3t5=6. Thus, polymer properties which depend on
the chain’s length Rk should also show an early universal
relaxation, while those depending on R? should be af-
fected by the chain stiffness.

The experience with the wormlike chain model sug-
gests that the tensions always play a significant role in the
polymer dynamics both near and far from equilibrium
(e.g., [3,4,6] as well as the present study). Our methodol-
ogy to determine the tensions and the tension components
(which we establish in the current Letter) combined with
our methodology to determine over extended time peri-
ods the chain’s configuration evolution (which we estab-
lished in our previous paper [7]) helps us understand the
problem mechanism and physics, and furthermore the
properties of the polymer solution. For example, during
intermediate times we can prove that the polymer stress
scales as �11 � RkFk � NFk, where Fk is given by (4) and
(6), while the solution birefringence obeys the law B�0� �
B�t� � �R2

k
�0� � R2

k
�=N, where R2

k
�0� � R2

k
is given by (3)

and (5) above [8,9]. Thus, we believe that these method-
ologies are well suited to study a wide array of problems
in polymer dynamics.
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